CORRECTIONS

Yeong-Deuk Shin, Sun-Young Kim, Jun-Hwan Ahn, and Jae-Suk Lee*: Synthesis of Poly-(*n*-hexyl isocyanate) by Controlled Anionic Polymerization in the Presence of NaBPh₄. Volume 34, Number 8, April 10, 2001, pp 2408–2410.

In the Conclusion, the wrong reaction time (10 min) was inserted. The complete sentence is the following:

The optimum polymerization condition of HIC was found to be 20 min at the -98 °C in THF in the presence of NaBPh₄.

Because of an error in the printing process, the titles of the first column and the second column in Table 1 were changed each other. The complete table is shown below.

Table 1. Anionic Polymerization of *n*-Hexyl Isocyanate in the Presence of NaBPh₄ in THF at −98 °C

[NaBPh ₄] ₀ / [Na-Naph] ₀	[HIC] ₀ / [Na-Naph] ₀	time, min	$\frac{M_{ m n} \times}{ m calcd}$	10 ⁻⁴ obsd ^a	$M_{ m w}/M_{ m n}^a$	yield of polymers, %
9.9	48.9	10	1.10	12.8	1.08	89 (11) ^b
10.6	39.0	20	0.93	10.7	1.11	99
9.6	45.3	20	11.5	11.7	1.09	99
10.3	56.4	20	13.9	14.5	1.07	96
12.6	72.4	20	17.6	16.5	1.10	96
10.3	88.2	20	21.5	22.2	1.11	96
9.0	41.3	30	10.5	11.2	1.10	99
9.9	48.0	40	11.8	12.8	1.12	96
9.5	49.6	60	11.5	10.8	1.13	93 $(7)^c$
11.0	52.7	80	11.8	11.0	1.08	87 $(13)^c$
10.0	55.2	120	11.4	10.6	1.05	81 $(19)^c$
d	d	30				0 `

 a $M_{\rm n}$ and $M_{\rm w}/M_{\rm n}$ were measured by SEC-LS in THF at 35 °C. b The yields of monomer are presented in parentheses. c The yields of trimer are presented in parentheses. d Polymerization of HIC (5.24 mmol) was performed with NaBPh₄ (0.97 mmol) without Na–Naph.

MA012497I

10.1021/ma012497i Published on Web 05/24/2001

H. Meng and F. Wudl*: A Robust Low Band Gap Processable n-Type Conducting Polymer Based on Poly-(isothianaphthene). Volume 34, Number 6, March 13, 2001, p 1810.

Due to an unfortunate oversight, Y. Chen was omitted from the list of authors. The correct list of authors should be H. Meng, Y. Chen, and F. Wudl.

MA0124946

10.1021/ma0124946 Published on Web 05/31/2001